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Application of dynamic data driven application system in
environmental science
Jingwei Song, Bo Xiang, Xinyuan Wang, Li Wu, and Chun Chang

Abstract: The paradigm of dynamic data driven application system (DDDAS) has been proposed as a framework to analyze and
predict the character and behavior of complex systems that influence computational models significantly. Its accuracy and
efficiency lies in its ability to integrate observations on different temporal and spatial scales from real-time sensors, and in its
measurement steering and controlling capabilities. Many problems in environmental sciences are nonlinear and complex,
impossible to solve by using input/output sequence flows without feedback control. Nonlinear system efficiency depends on
measurement control and steering, on-line data assimilation, and model selection with dynamic optimization. Compared with
traditional methods, DDDAS possesses the capacity to overcome these limitations. This paper discusses DDDAS and classifies
typical cases of its application in environmental sciences into three levels of paradigm. Short reviews of multi-model simulation
and data assimilation are provided for practical use. Recent developments and future perspectives are reviewed. Future work
may address determining automatically where, when, and how to acquire real-time data, and its integration with GIS, to improve
efficiency and accuracy. User-generated content will find wide application in the future. Considering the differences between
DDDAS and other data-driven methods in solving the same nonlinear complex system problems, a combination of nonlinear
science and chaos theory is advocated.

Key words: dynamic data driven application system, GIS, nonlinear system, environmental science.

Résumé : On a proposé le paradigme de système d’application dynamique géré par les données (SADGD) comme cadre pour
analyser et prédire le caractère et le comportement de systèmes complexes influençant significativement les modèles informa-
tiques. Sa précision et son efficacité résident dans sa capacité à intégrer les observations à différentes échelles spatio-temporelles
provenant de senseurs en temps réel, et dans ses mesures dirigeant et contrôlant ses capacités. Plusieurs problèmes en environ-
nement sont non linéaires et complexes, impossibles à résoudre en utilisant le flux de séquences entrées/sorties sans mécanisme
rétroactif de contrôle. L’efficacité des systèmes non linéaires dépend du contrôle et de la gestion des mesures, de l’assimilation
des données en ligne et du modèle de sélection avec optimisation dynamique. Comparativement aux modèles traditionnels, le
SADGD possède la capacité de surmonter ces limitations. Les auteurs discutent du SADGD et classifient des cas typiques de ses
applications en sciences de l’environnement, selon trois degrés de paradigmes. Les auteurs proposent de courtes revues de
simulation multi modèles et d’assimilation de données, pour utilisation pratique. On passe en revue les développements récents
et les perspectives futures. Les progrès futurs pourraient viser à déterminer automatiquement où, quand et comment obtenir les
données en temps réel et son intégration avec les GIS pour améliorer l’efficacité et la précision. Le contenu généré par les usagers
trouvera de larges applications dans le futur. Considérant les différences entre le DDDAS et les autres méthodes dirigées par les
données pour résoudre les mêmes problèmes de systèmes complexes non linéaires, on préconise une combinaison de la science
non linéaire avec la théorie du chaos. [Traduit par la Rédaction]

Mots-clés : système d’application dynamique géré par les données, GIS, système non linéaire, science de l’environnement.

1. Introduction
The computational concept dynamic data driven application

system (DDDAS) was first introduced in the early 1980s while us-
ing the Monte Carlo and discrete ordinates methods to compute
radiation transport for simulations and measurements relating to
oil exploration. Originally, it was envisioned to accelerate compu-
tation by using additional experimental data in selective places
(Darema 2004).

Later, when utilized in various fields, the content of DDDAS was
enriched and expanded. The National Science Foundation (NSF)
defines DDDAS as a paradigm with “the ability to dynamically
incorporate data into an executing application simulation, and in
reverse, the ability of applications to dynamically steer measure-

ment processes” (Darema et al. 2005). Among the various choices
for solving nonlinear complex problems, DDDAS is attractive be-
cause of its flexibility with respect to on-line data assimilation,
measurement control, and model selection and optimization. It is
an ideal method by which to analyze, manipulate, and simulate
complex systems.

Traditionally, DDDAS has been applied in meteorology
(Kanamitsu 1989; Maraun et al. 2010; Pagowski et al. 2010), ocean-
ography (Cummings 2005; Carton and Giese 2008), hydrology
(Vermeulen et al. 2005; Blaas et al. 2007; El Serafy et al. 2007; Li
2007), geography (Dey and Singh 1999; Li et al. 2004; Liang and Qin
2008), and other environmental systems. Even though the names
of the methods might be different they convey the same para-
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digm, as described by NSF DDDAS (2013; www.cise.nsf.gov/dddas).
Later, novel applications and technologies were achieved in other
fields. DDDAS was introduced as a main framework with detailed
techniques, such as fast Fourier transform, ensemble Kalman fil-
ter, and genetic algorithms for coupling data from diverse sources
in simulating and predicting the spread of wildfire (Mandel et al.
2007; Denham et al. 2008; Mandel et al. 2010, 2012). These re-
searchers defined and refined an integral workflow covering data
acquisition, data assimilation, model selection, and web publish-
ing that can be used as references for environmental monitoring
and decision making. Furthermore, owing to its flexibility, DDDAS
has been used in emergency systems to integrate different
media and sensors via real-time communication, feedback con-
trol, and real-time processing (Schoenharl and Adviser-Madey
2007; Chen et al. 2011; Hawe et al. 2012). Recently, a DDDAS has
been successfully introduced in monitoring volcanic ash propaga-
tion (Patra et al. 2012) and hazard analysis and real-time estima-
tion of total phosphorus load in a Mississippi Delta stream
(Ouyang et al. 2013). DDDAS has also been applied in many other
fields, such as earth observation sensor web architecture enhance-
ment (Moghaddam et al. 2007), subsurface water spill problems
(Douglas et al. 2006), agro-ecosystem modeling (Dorigo et al. 2007),
and even in industrial engineering (Koyuncu et al. 2007; Williams
et al. 2013). However, a complete implementation of DDDAS is
demanding of both time and effort; therefore, some examples
mentioned above are incomplete applications that will be ad-
dressed in detail. This paper is structured as follows: (i) introduc-
tion to the basic structure of the DDDAS paradigm; (ii) description
of three levels of the DDDAS paradigm and their pros and cons;
and (iii) an overview of future prospects of DDDAS with regard to
both technology and application.

2. Concept and structure
The concept of DDDAS comprises three basic components: data,

measurement, and algorithm. DDDAS data do not just refer to
traditional off-line data, but also to real-time or near real-time
data, which are incorporated instantly into the simulation sys-
tem. On-line or off-line data can be either continuous or discrete
depending on the actual situation. Traditional paradigms have
predetermined measurements and data acquisition sensors, fre-
quencies, and processing algorithms that are fixed once the sys-
tem starts operating. DDDAS, however, can adjust dynamically
and steer the measurement component to gather data at the op-
timum time and site. DDDAS can also adapt or choose the opti-
mum algorithm according to the output and real-time data, whereas
a traditional model is fixed and cannot steer the measurement or
modify the algorithm by dynamic compilation.

The core feature of DDDAS lies in its ability to inject data dy-
namically, to steer the measurement, and to select the optimum
algorithm. This provides DDDAS with a high level of freedom that
is crucial in the simulation of complex systems. Examples can be
found in meteorology in which systems are highly nonlinear and
complex (Brutsaert 1982). A complex system is often described by
a numerical simulation method, and simulation errors are caused
by model error and errors in initial conditions (Harlim 2006).
Furthermore, a complex system comprises both intrinsic and ex-
trinsic stimuli interacting with each other, which makes the re-
sulting system model so complex that we have to simplify the
system representation in the model so that the numerical simu-
lations are tractable. In some cases, the observations are describ-
ing the system more realistically than the simulation itself.
However, simulation is essential if we want to examine and ana-
lyze the system, and make predictions. Data assimilation (DA) is
raised to solve initial error propagation and its impact on the
fidelity of the results of the simulation model. For example, the
typical approach of three/four dimensional variational (3/4-D VAR)
DA has been introduced successfully in meteorology, and errors

have been restricted to acceptable levels (Gustafsson et al. 2001;
Rawlins et al. 2007).

Figure 1 is an abstract schematic structure showing the basic
symbiotic components and functions of DDDAS, which includes
five parts: measurement steering, measurement selection, appli-
cation model selecting, runtime environment, and prediction.
Real-time data act like a propeller injecting new data into the
dynamic model, keeping it looping and iterating for the purpose
of obtaining the best prediction. However, it is also steered and
controlled by the measurement steering component for obtaining
the best data source. All components of this model are dynamic
and adjust to the ever-changing nonlinear complex system, ex-
cept for the initial input data. In most cases, the simulations
exhibit sensitive dependence on the initial values and if not con-
trolled, the simulation system and the object system will bifurcate
and their orbits will separate. If new measurements are injected
into the simulation system at the appropriate time, they will syn-
chronize with the real system before bifurcation. In this way, the
error propagation of the simulation system is restricted to a cer-
tain level and errors caused by the butterfly effect in the nonlinear
system, as discovered first by Lorenz (1963), can be closely miti-
gated.

Figure 2 is a typical example of a DDDAS of a real-time natural
hazards monitoring system chosen after consulting several existing
systems (Mandel et al. 2007, 2012; Denham et al. 2008; Moghaddam
et al. 2010; Allaire et al. 2012). The five parts in the abstract model
(see Fig. 1) are all presented in this system with measurement
steering, measurement control, and prediction corresponding to
measure control, DA, and simulation output, respectively. Appli-
cation model selecting and the runtime environment framework
are included as the simulations and predictions model. Satellite
data and static data are either downloaded from the internet or
are loaded from storage devices, but they cannot be controlled by
the system. Observed data are flexible, allowing the system to
decide dynamically the measurement rate or indicators. Cur-
rently, this feature is more important in mechanisms such as
unmanned vehicles, so that intelligent machines are equipped
with the ability to make decisions based on the actual situation
(Allaire et al. 2012). After one loop, feedback is sent back to the
simulation and prediction module to determine whether to

Fig. 1. Schematic structure of dynamic data driven application
system (DDDAS) comprising five basic components: measurement
steering, measurement selection, application model selecting,
runtime environment, and prediction. These parts can adjust
themselves to form a self-adaptive DDDAS. Real-time data are
acquired from a sensor web consisting of ground observations,
satellite images, and other sensors.
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change to an alternate simulation model, refine the parameters of
the current model, or to adjust the measurements. When using
data in environmental sciences, DA and simulation processes may
run on remote computers without human interference. Further
analysis can be published on a website, such that end users have
access to its origin, status, and future trends.

3. Levels of DDDAS in current applications
The synergistic coupling of computation and measurement of a

DDDAS using the W-tuple (S, D, M, R, A) has been presented pre-
viously by Darema (2011). In her theory, a DDDAS comprises static
data inputs (S), dynamic data inputs (D), measurement steering
(M), application modeling (A), and runtime environment (R). Data
available to the application when commencing the execution is
defined as static data inputs (S). Data at execution time is defined
as dynamic data inputs (D). Measurement steering (M) is real-time
adaptation of heterogeneous and varying time-scales, modalities,
and formats of measurements. Application modeling (A) desig-
nates the application simulation model with many degrees of
freedom and multimodal components interfaces for mathemati-
cal or statistical representation. Runtime environment (R) is the
general system software supporting heterogeneous computational
and measurement environments.

Various types of instantiations of DDDAS can be categorized by
measurement and computation coupling, measurement control
method, and model type from the W-tuple theory. We summarize
the W-tuple theory from Darema (2011) and present the decision
tree in Fig. 3a. Strong coupling between measurement and com-
putation means the on-line or real-time data are continually in-
jected into the system, while periodic or weak coupling indicates
the data are injected periodically or at sparse frequency. Application-
driven measurement control is used to dynamically adjust mea-
surement method; it could degrade to computational steering
only if simple parametric adjustments are induced by the user.
Application model is classified as a simple analytical model and
model library. The difference between these two models is
whether or not there are multiple models.

Cases in environmental sciences have their own characteristics.
Their study objects are often macro-systems involving atmosphere,
water, forest, soil, and animal or plants species. Observed data
from these complex data sources are heterogeneous with widely

Fig. 2. Typical dynamic data driven application system (DDDAS)-based paradigm.

Fig. 3. W-tuple based decision tree of general dynamic data driven
application system (DDDAS) (a) and one adapted to an environmental
system (b).
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varying quality, and it is hard to unify them for system processing.
Based on these facts, we simplified the general DDDAS decision
tree to a concise decision tree (Fig. 3b) suitable for describing
environmental problems applications. Strong coupling between
measurement and computation are impossible because satellite
and many ground sensors cannot provide continuous observa-
tions. Periodic and weak coupling are merged considering these
two measurement intervals can be switched based on actual de-
mand in environmental cases. And if the simulation system is
consisted of multi-model combination, in most cases, it will re-
quire measurement control to satisfy different model’s input
needs.

This simplified definition more accurately covers current
DDDAS applications and highlights the important features in envi-
ronmental sciences and engineering. As Darema (2011) points out,
many systems implement only part of the definition that happens
especially in the environmental DA system (Li et al. 2004; Carton
and Giese 2008; Liang and Qin 2008; Pagowski et al. 2010). A large
sum of incomplete DDDAS applications suggests that the para-
digm maybe more suitably described by levels of models ranging
from simple to complex. After having undertaken an in-depth
analysis of general DDDAS applications with the W-tuple theory,
the DDDAS paradigm fit for current environmental applications
as shown in Fig. 3b can be classified into three levels.

3.1. The basic level
Figure 4 is the flow paradigm of a basic level of DDDAS with

only a data stream. Its W-tuple is reduced to (S, “DataAssim”/p, –,
A, R). Where A is just a single traditional analytical model. Its
dynamic input can either be just parameter adjustment or DA or
both of them. After the initial input is set, the model functions to
produce predictions, which are then merged with on-line data in
the DA module. As on-line data are injected continuously into the
system, new observation data are assimilated into the system, and
errors caused by the initial field and the simulation’s defects are
limited to an acceptable level. In this module, various types of DA
algorithm are employed to integrate the on-line data (Ma and Qin
2012). Thus, the parameters of the model are improved to fit the
complex system, and the error bars are limited to acceptable lev-
els. The new input data with the DA method synchronize the
simulation and real system orbits. This simple level is applicable,
although it comes at a price because its measurement sampling
intervals cannot be modified. This simulation requires that the
bifurcation point be reached before new data are assimilated into
the system (Lorenz 1993). After the bifurcation point, the simula-
tion becomes unreliable. Furthermore, its accuracy is also af-
fected by the simulation algorithm, because where a major factor
or an interaction process is not considered when designing the
algorithm, the orbit of the simulation could soon separate from
that of the real system. However, this simulation model is suitable
in geospatial information related studies, where data are acquired
via a satellite or airborne sensor and the data acquisition time lag
is fixed, and thus, measurement steering is not applicable (Barnes
et al. 1998). Most simulation or prediction needs where remote
sensing data are used can be sufficiently met at the basic level of
DDDAS.

3.2. The measurement control level
In some systems, dynamic measurement steering plays an im-

portant role in the simulation, especially in unmanned vehicles
and aircraft. Its W-tuple is represented as (S, “DataAssim”/p, M, A, R).
Other simulations will obtain better performance if the sensor
networks have the ability to determine dynamically the appro-
priate method of measurement (e.g., what, when, and how to
measure). To cope with the ever-changing environment, the
simulation system adjusts its measurements based on the needs
of the algorithm.

Figure 5 shows the paradigm of adding measurement control
into the basic-level DDDAS with a data stream and control stream.
After assimilating new real-time data, it will adjust automatically its
measurement method to acquire new data appropriate for the situ-
ation. Thus, the effort of the sensors or machinery is reduced and
accurate useful information gathered. In environmental sciences,
where many observations are made from ground-based stations, it is
possible for a system to determine the time and method of data
acquisition. Ouyang et al. (2011) have employed simulations to guide
real-time data measurement (download data dynamically from the
USGS) in estimating real-time N (nitrogen) load in surface water.
Moghaddam et al. (2010) have adopted measurement control, by
modifying the sampling rate and other parameters of in situ sensors,
to achieve minimum energy costs in optimal measurement of
surface-to-depth profiles of soil moisture. Data acquired by sensors
can be classified as continuous or discrete data. For discrete data, the
sampling intervals are very important because intervals that are too
sparse lead to unreliable results, whereas intervals that are too fre-
quent may lead to redundant data or a rise in energy consumption.
Measurement control of DDDAS will adjust the measurements dy-
namically according to the requirements of balancing the sampling
rate with other related parameters.

3.3. The complete level
Figure 6 is the complete-level DDDAS, which fits the definition

of Darema (2004, 2011, 2012) and the NSF. Its W-tuple is the com-
plete DDDAS as (S, “DataAssim”/p, M, model_lib, R). In this level, a
model library is added to the system, and model selection and
optimization strategies are employed. It is steered and controlled
by the DA module to select the ideal model and to adjust the
parameters to describe and simulate the complex system. The
basic hypothesis is that, in some situations, the systems could be
very complex and nonlinear with multiple factors for which no
single physical method can achieve good performance. With a
model base, different models are able to be compared for the
selection of the most suitable and its parameters can be adjusted.
The system can select dynamically the best temporal model to
simulate the complex system. Allaire et al. (2012) have designed a
self-aware aerospace vehicle that can adapt its performance dy-
namically by gathering information and responding intelligently.
Real-time execution of online models and the exploitation of dy-
namic data streams are achieved by employing a multi-fidelity
approach. Bazilevs et al. (2013) have executed computational mod-
els from measurement data and used control strategy to steer the
measurements. However, at the time of writing this paper, only
one report (Patra et al. 2012) on the application of a complete-level
DDDAS, as shown in Fig. 6, in an environmental science problem
had been found. However, many more opportunities for new ap-
plications of complete-level DDDAS for addressing environmental
sciences problems can be envisioned; we discuss such perspec-
tives next.

Fig. 4. Basic level of dynamic data driven application system
(DDDAS). Data assimilation (DA) is responsible for on-line data into
the model. No control stream is included in this system.
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4. Application strategy

4.1. Multi-model simulation and forecast
The three-level DDDAS paradigm provides the alternative struc-

ture for a specific environmental application. Even though cur-
rent mainstream applications stop at the measurement control
level (Fig. 5), the complete level with multi-model (Fig. 6) will be
used in the near future to overcome the complexity of the envi-
ronmental problems. There are two strategies for multi-model
DDDAS application and management: hybrid forecast and multi-
model adaptive control (MMAC).

Hybrid forecast is a method of improving each single model by
combining all the candidate models. As different models have
different mechanism and parameters, combining them into a sin-
gle model may compensate disturbance and limit the error bar.
Various ways of assigning weight deciding include equal weights,
unequal weights, and other deep integration methods. Unequal
weight is often carried out by a training data optimization algo-
rithm like particle swarm (Huang et al. 2005) or genetic algorithm
(Colorni et al. 1996). Other deep integration methods are only
available with regard to specific environmental problem. For ex-
ample, Xu et al (2013) built a hybrid forecast model in predicting
municipal solid waste by taking time scale into consideration.
Anctil and Tape (2004) used wavelet decomposition method to

decompose the time series data into three subsets, and artificial
neural network is then used to forecast each sub-series. These
deep integrations are often built based on specific cases and are
not universally significant as references. As for weight-based com-
binations, Smith and Wallis (2009) assert that optimal combina-
tions of equal weights or weights close to equality often
outperform more complicated weighting schemes. We believe for
a specific problem, before choosing the best method, all the
available weights assigning methods should be tested on the
training data first.

MMAC was first proposed by Lainiotis (1971). This method is
based on the hypothesis that the current condition can be simu-
lated by one or a set of relatively simple models. Unlike hybrid
forecast, it has a supervisory controller (control model) responsible
for switching between different models. Three different switching
strategies are as follows: direct multiple models adaptive control,
indirect multiple models adaptive control, and weighted multiple
models adaptive control algorithms. Direct multiple models
adaptive control labels candidate models and compare their per-
formances to determine the optimal model and corresponding
parameters. As Zhivoglyadov et al (2000) have pointed out, this
exhaustive search may converge very slowly, resulting in exces-
sive transients that will lead the system “unstable” in a practical
sense. However, most environmental problems do not have high
near-real-time demand and sparse data will not allow a continu-
ous model. Indirect multiple models adaptive control establishes
sets of candidate models with their parameter ranges as given (off
line). The on-line controller switching is based on the performance
evaluation of the model sets. This strategy is more efficient but
requires prior knowledge of the models and their parameter
ranges. Weighted multiple models adaptive control algorithm is
similar to direct adaptive method, but the output is the weighted
result of the candidate. This method is most flexible because the
weight for each candidate can be dynamically adjusted or even
abandoned temporally.

4.2. Data assimilation
The European Centre for Medium-Range Weather Forecasts

(Bouttier and Courtier 1999) defines DA as an “analysis technique
in which the observed information is accumulated into the model
state by taking advantage of consistency constraints with laws of
time evolution and physical properties.” Through the definition,
to describe the time evolution of the study object and its future
trend within a certain range of precision requirement, DA re-
quires constant observation (usually large sum of heterogeneous
data in environmental problems) absorption in each analysis
cycle and produces the “analysis” as the best estimated current
state, and this state can be applied for accurate future prediction.
Global data assimilation system (GDAS) (Data Assimilation Team
2014) from the National Oceanic and Atmospheric Administration
(NOAA) of USA and the land data assimilation system (LDAS)
(NASA 2014) from the National Aeronautics and Space Admin-
istration (NASA) are the two most famous DA systems for clima-
tology, hydrology, oceanography, ecology, and other related
environmental sciences.

Commonly used distinction for DA algorithms are sequential
and nonsequential. Sequential means taking historic and current
observations to infer the current and future state, while nonse-
quential refers to taking all the available data to infer the past true
state. Various types of DA algorithm are developed including 4-D
optimum interpolation, variational, data assimilation, filtering,
Bayesian method, generalized solution data assimilation, adjoint
equation method, and artificial neural network. Table 1 lists the
most commonly used DA algorithms with their characteristics.

Fig. 5. A measurement control level of dynamic data driven
application system (DDDAS). Compared with Fig. 4, this DDDAS
possesses a control stream and measurement control module. They
cooperate to obtain the best data source for the needs of the
simulation model.

Fig. 6. The complete level of dynamic data driven application
system (DDDAS). This paradigm is more complex with a dynamic
compiling function. Parameters or functions can be adjusted and
compiled according to the latest performance.
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5. Future perspectives

5.1. Technical breakthroughs
The integration of remote sensing data and ground-based ob-

servations in GIS with an intelligent model base is a potential
application, especially in hydrology and meteorology. For exam-
ple, in most places, MODIS (moderate resolution imaging spectro-
radiometer) collects images four times per day when combining
the two Terra and Aqua EOS satellites (Freeborn et al. 2011). Com-
pared with satellite imagery, in situ measurement is time con-
suming, inconvenient, and can only retrieve data at specific
locations. However, a few studies have reported that the quanti-
tative retrieval process from satellite images is unreliable owing
to incomplete retrieval algorithms, cloud contamination, and
aerosol impact (Kutser 2004; Zhang and Reid 2009). Because of the
uncertainty of remote sensing images, complementary ground-
based observations enable the algorithm to make better predic-
tions. Ouyang et al. (2011) and Moghaddam et al. (2010) have
employed successfully a method to control ground observations
to improve the performance of sensors, while maintaining pre-
diction precision. As Fig. 7 shows, GIS can provide a spatial data
management service, a spatial analysis tool, and visualization
methods as aids for massive data storage, model optimization,
and decision making, respectively. GIS spatial database can offer a
significant capability of organizing, storing, and managing multi-
source data. GIS spatial analysis method can provide spatial data
mining tool for model optimization and refinement. The visual-
ization techniques of GIS can assist in decision making and
multimedia publishing. However, there are still three principal

problems with these space-air-ground sensor systems. (i) Because
there are many numerical models available, collating them into a
single model base and organizing it dynamically to yield optimum
results systematically remains a difficult task. Efforts have been
made, for example by the OpenMI Association (2013), to define an
interface that allows different models to exchange data simulta-
neously at runtime. Successful applications of OpenMI can be
found in many application areas (Becker and Schuttrumpf 2011;
Betrie et al. 2011; Bulatewicz et al. 2012). Section 4.1 provides three
model controlling strategies (see Figs. 4, 5, and 6) that can be
carried out in common applications. But for those applications
with high demand in efficiency and accuracy, the technical details
for OpenMI type of applications are very sophisticated and require
breakthroughs in cybernetics and systems theory. (ii) Because GIS
is built for spatial data storage and spatial analysis, it is necessary
to synchronize the steps of GIS and DDDASs with regard to mea-
surement control and model selection. Methods for achieving sat-
isfactory levels of synchronization are needed. (iii) Different data
acquisition methods have different spatial and temporal scales
(Hu 2009; Shang et al. 2011), which lead to different conclusions,
and fusing them into one unified system remains difficult. Figure 7
illustrates a GIS-based DDDAS in an environmental science appli-
cation. GIS can provide the spatial database to assimilate and
normalize the massive amount of data acquired for future man-
agement and geocomputing. Spatial analysis can optimize and
configure the geocomputing and simulation system. The visual-
ization method can be used for both decision making and on-line
publishing. The result of geocomputing and the efficiency of the

Table 1. Commonly used data assimilation algorithms.

Algorithm Mechanism and character Applications

3-D VAR Find the minimum of a penalty function that measures the size of
a control variable and the misfit between observations and
corresponding prediction in a time-window. No account is
taken of the actual time of each observation. Adjoint models
and the functional gradients are often required in calculating
penalty function.

Weather simulation (Gustafsson et al. 2001).
A typhoon bogusing case study by fifth-
generation Mesoscale weather model
(Barker et al. 2004). Ozone and fine
particulate matter observations (Pagowski
et al. 2010).

4-D VAR Improves 3-D VAR by taking time into consideration. Increment is
accumulated at each iteration in the time-window. Adjoint
models and the functional gradients are also needed. Requires
longer computation time. It usually has better performance
than 3-D VAR though it takes more time (Lorenc and Rawlins
2005).

Meteorological system simulation (Dimet and
Talagrand 1986; Rawlins et al. 2007). Soil
moisture estimation (Reichle et al. 2001).

Kalman filter Estimate statically optimum state of the system from predicted
state and observed state using minimum mean square error.
The optimum state is used as the initial value for the model to
make forecast. This algorithm is not suitable for models with
nonlinear transferring function.

Navigation and positioning (Cooper and
Durrant-Whyte, 1994). Spatio-temporal
prediction of snow water equivalent
(Huang and Cressie 1996). Ocean climate
(Carton and Giese 2008).

Ensemble
Kalman filter
(EnKF)

A hybrid model of ensemble forecast and Kalman Filter. Basic
assumption is that all probability distributions involved are
Gaussian. This method is suitable for nonlinear complex
models and consumes relatively less time. It is currently the
most widely used model in environmental science and is now
available in OpenDA (OpenDA Association 2014).

(Houtekamer and Mitchell 2001). Hydrology
modelling (Reichle et al. 2002).
Atmospheric simulation land surface
variable estimation (Liang and Qin 2008).

Particle filter Ensemble members (particles) are set first for sampling and
probability distribution function is analyzed accordingly. It is
suitable for nonlinear models. Different from EnKF, this
algorithm is free of Gaussian distribution assumption. The
random process makes it easy to be for parallel computing.

Hydrologic simulation (Moradkhani et al.
2005). Soil moisture simulation (Qin et al.
2009).

Artificial neural
network
(ANN)

Using history observations and corresponding next step
predictions in a time-window to train a neural network. Make
future predictions according to current observation and model
prediction. Artificial intelligent models are black-box model
and its performance highly depends on its data.

1-D shallow water simulation (Härter and de
Campos Velho 2008). Storm surge
prediction (Siek and Solomatine 2011).
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simulation are largely dependent on the cooperative work of GIS
spatial analysis, the physical model, and the data-driven models.
Because spatial expertise knowledge is stored within the GIS and
physical expertise knowledge lies within the DDDAS, an intelli-
gent processing system is essential for harmonizing the different
types of knowledge. Currently, a GIS provides a runtime frame-
work for simulation and modeling. Madey et al. (2007) have ad-
opted GIS to map and visualize scenarios of disaster and emergency.
Chen et al. (2011) have used a GIS (NetLogo GIS) directly as a frame-
work to implement their simulation and integrate buffer analysis
into their model.

As many research subjects relating to DDDAS have chaotic be-
havior, nonlinear data-driven methodologies have been intro-
duced. Originally, these data-driven methodologies have been
used for nonlinear time series forecasting in fields such as finance
(Hsieh 1991; Kim 2003), meteorology (Shukla 1998), power load
(Niu et al. 2010), and landslide forecasting (Huaming et al. 2003).

Among the many theories, artificial neural networks and the
phase space reconstruction method stand out as the most useful.
In this regard, pioneering work was performed by Härter et al.
(2008) by employing a radial-basis function neural network for
assimilating data by emulating an ensemble Kalman filter to im-
prove a 1-D shallow water model, and by Siek and Solomatine
(2011) who used a nonlinear autoregressive exogenous inputs neu-
ral network for DA of chaotic storm surge models. There is a
natural connection between physical-based model and chaos the-
ory. For example, the physically based Navier–Stokes equations,
which are used widely in meteorology and hydrology, have
proven to be chaotic and have Lorenz attractors (Lorenz 1963).
Siek (2011) listed several DA methods and chaotic prediction meth-
ods, and proposed the idea of combining data (time series) from
observations, using the well-developed methods of nonlinear dy-
namics and chaos theory, while assimilating new data into the
system to improve performance. Because chaos is the essence of

Fig. 7. GIS-based dynamic data driven application system (DDDAS).
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complex systems, such as weather and water-bodies, the potential
applications of nonlinear dynamics and chaos theory should be of
great interest to scientists working in these fields.

User-generated content (UGC) is a tool for collecting data from
the Web, news media, or volunteers. Data from UGC are flexible,
abundant, and timely with low fidelity and high levels of redun-
dancy. They can be used as complementary data in some cases
where data acquisition is difficult or for data validation in many
applications. In some cases public participation can provide com-
prehensive and in-time data at very low costs, and if integrated
into the DDDAS, the efficiency and performance of the simulating
system will be enhanced. Schweik et al. (2005) raised the idea
OS/OC (open source/open content) for collaborative approaches for
social–ecological research in general and mentioned an example
in land-use/land-cover change. Maisonneuve et al. (2009) built a
mobile phone based citizen noise monitoring prototype imple-
mentation and tested the feasibility and credibility of this system
by evolving volunteers providing the noise and corresponding
position data. Taking advantage of this data acquisition method,
Hasenfratz et al. (2012) built a DDDAS with multiple stationary
and mobile sensors web for ozone pollution and achieved reason-
ably good results.

5.2. Future applications
Applications in meteorology, oceanography, hydrology, geogra-

phy, and limnology will progress technically in GIS-integrated
DDDAS, advanced machine learning algorithm, and chaotic
model, UGC strategy described above. Additional spatial and tem-
poral data will be injected into the system, the DA algorithms will
be refined, and the GIS will be integrated to handle the massive
amount of data required for improving the performance of geo-
computing. Nonlinear dynamics and chaos theory will be consid-
ered and potential application will be advocated further.

DDDAS has great potential in social and management science
and can be applied widely in the fields of natural disaster rapid
response (Madey et al. 2007), health monitoring (Cortial et al.
2007), and crime prevention or other related social sciences
(Kennedy and Theodoropoulos 2006). Social sciences have more
nonlinearity and complexity, and thus, they rely on comprehen-
sive understanding, dynamic measurement steering, and behav-
ioral analysis. In social sciences, massive amounts of information
are gathered from multimedia sources and the Internet. Without
a good paradigm, the “big data” era may just be data rich, but
information poor and inconsistencies in the massive amounts of
data may lead to confusion. Such defects could be eliminated by
designing a DDDAS that incorporates new data and limits uncer-
tainty.

Air pollution has become increasingly important in urban ar-
eas, particularly in rapidly growing economies such as China, and
is closely linked to public health. During the first half of 2013 in
Beijing, only 38.9% percent of days met government standards
(Ministry of Environmental Protection, People’s Republic of China
2013), for which PM2.5 was the primary pollutant. Harrison et al.
(2012) provided a study on the temporal and spatial patterns of
PM2.5 and found that the density of PM2.5 has so-called diurnal
patterns or steep rises and falls during the day, and complex
spatial variation due to wind direction and speed. Even though
methods of simulation and prediction have provided valuable
insights into the spatial and temporal distribution of air pollut-
ants, inadequate input data with associated uncertainties hinders
the effectiveness and accuracy of the models. In addition, an in-
creasing number of air pollutant monitoring stations are being
built to provide a better picture of PM2.5 distribution. If the DDDAS
paradigm is introduced to these sensor webs, the monitoring sys-
tem will possess the capabilities of sampling interval control and
sensor spatial distribution control, reducing sampling effort and
improving treatment efficiency. Similar work was done by
Hasenfratz et al. (2012) who used DDDAS for targeted data gath-

ering from multiple stationary and mobile sensors for ozone pol-
lution. Their framework can be implemented easily into other air
quality monitoring and assessment system with portable hard-
wares, low-cost devices, and reliable results.

Other applications include biological systems, which need com-
prehensive understanding using various types of models. For ex-
ample, when building symbiotic simulation systems to describe
various kinds of symbiotic relationships, more than one model is
used to build a hybrid simulation system. DDDAS is an appropri-
ate choice because it is a paradigm that has the ability to incorpo-
rate new data dynamically and in reverse, steer the measurement
processes (Aydt et al. 2008). Biodiversity, invasions of exotic spe-
cies, and floods and droughts are all suitable research areas for
applying DDDAS to analyze the complex processes and to gain
insights into such phenomena. The basic assumption of using
DDDAS in ecology and biology has been described when the
DDDAS initiative was launched at NSF, but real implementations
of complete-level DDDAS in those areas are seldom reported. This
could be because building a sensor network to monitor species
is a very difficult task; and because there are many technical
problems associated with DDDAS that have not yet been solved
completely. Some applications have introduced DDDAS without
measurement control or model selection and optimization strat-
egies (Szewczyk et al. 2004; Nagendra et al. 2012; Maffey et al.
2013). UGC has also been introduced into wildlife data acquisition.
Zhang et al. (2012) mined data from photos collected from social
networks like Flickr and Twitter as complementary data to
ground stations and satellite images. Their studies could further
be integrated into ecological modelling and monitoring.

6. Conclusion
This paper presents a review of DDDAS focusing on their basic

concept and structure, three different levels of paradigm, and
future perspectives. A synthesis of the literature reveals the wide
range of applications of DDDAS in environmental sciences, espe-
cially with regard to complex nonlinear systems. As DDDAS is an
integrated system covering many types of hardware and software,
integrating different types of methods and algorithms is a prob-
lem that needs to be solved. Furthermore, the methods of chaos
theory and machine learning have become established tools in
environmental sciences, whereas the combination of model-driven
and data-driven methods is a new analytical approach. UGC may be
widely applied into environmental sciences for providing com-
plementary data and increase credibility. Dynamic data-driven
methods bring additional dimensions and capabilities into these
approaches. Because of the spatial and temporal variation in the
different data acquisition methods, unifying these data remains
difficult. Further studies could investigate and analyze the coop-
erative work of model-based and data-based models, and design
targeted controlling flow-work in solving environmental prob-
lems. Chaos and nonlinear theories could be considered and ap-
plied in some specific areas, such as meteorology and hydrology.

With the step of increasing spatial and temporal resolution, the
DDDAS paradigm has the potential capability of assimilating and
coordinating remote sensing data and ground-based observation
data into a single system for better prediction of nonlinear com-
plex phenomena. As data acquisition techniques are improved,
and advanced models and simulations provided, the fields of ap-
plication may well expand beyond meteorology, oceanography,
hydrology, geography, limnology, biology, and environmental
management. However, unwanted and unused data in this “big
data” era may contaminate the model and simulation. DDDAS
provides methods to dynamically and adaptively select and man-
age data, thus mitigating the “data deluge” of “big data” and
allowing the efficient exploitation of such data. Therefore, to
avoid dilemmas due to the massive amounts of data, advanced
algorithms, intelligent sensor webs, and fundamental and multi-
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disciplinary research are all needed to implement a full-level par-
adigm for better performance of DDDAS.
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