Addressing global challenges in conservation and digital recording of UNESCO sites with VHR radar space technology

D. Tapete & F. Cigna
The challenge

Examples of archaeological looting around the World

[the map is not exhaustive]
Archaeological looting in Syria

Location and severity of looting as documented by imagery-based analysis, over areas of factional control (early 2015).

Image courtesy: J. CASANA (2016)
Archaeological looting

Definition:
‘Unauthorised excavations without any scientific purpose to rob goods of historical or cultural value to sell on illicit markets’

Crisis and war can favour its spread

Key question:
Rate of occurrence?

Satellite data requirements:
1. Very High Resolution (VHR)
2. Regular acquisitions
3. Consistent acquisition geometry
4. Iterative methodology
Synthetic Aperture Radar (SAR) imagery

RADAR: RAdio Detection And Ranging
Sensor type: Active
Frequency: 0.3-300 GHz
Wavelength: 0.001-1 m
Resolution: up to < 1 m
Platforms: satellite, airborne, UAV, ground-based
Repeat cycle: daily-monthly
Satellite SAR missions

Acquisition strategies: routine, on demand, emergency
Satellite SAR in archaeology

Dry rivers revealed thanks to the radar penetration capability

Landsat MSS

Darfur, Sudan

SIR-A data (1981)
Satellite SAR in archaeology

The Open Initiative

Open Initiative on the use of space technologies to support the World Heritage Convention (2003)
… a growing scientific literature

Scopus publications on SAR for archaeological landscapes, archaeological prospection and condition assessment of cultural heritage

Publications co-authored by archaeologists

Tapete & Cigna (2016), *J Archaeological Science: Reports*
Archaeological site of Apamea, Syria

- Situated on the right bank of the Orontes, at the top of a high relief overlooking the Ghab plain
- Its strategic position was exploited to control the trade routes by Seleucus Nicator (~300 BC)
- 7 km-long ramparts refortified by the emperor Justinian (~500-600 AD) enclose the site
Cardo Maximus and colonnade at Apamea
Cardo Maximus and colonnade at Apamea
Industrial scale looting

- Evidence of looting starting from mid 2012
- “Satellite imagery shows that archaeological sites in Syria are dotted by thousands of illegal excavations ... that show there is looting on an industrial scale”

 (Irina Bokova, UNESCO, 2015)

- Use of excavators and bulldozers
- Very distinctive planimetric shape
- Holes up to a few metre-wide
- Excavations depths from < 1 m to a few metres (looters’ opportunistic rationale)
A look from space

Mar 2011 July 2011
A look from space
A look from space
A look from space

Evidence from Google Earth imagery

April 2012
- 0.93 km\(^2\) (~38%) looted, of which ~75% in excavated sectors, plus ~12% in unexcavated areas

September 2012
- New looting 0.015 km\(^2\) NW

March 2014
- Expansion NW up to 0.105 km\(^2\)

OPEN QUESTIONS
- Looting rates?
- Repeated looting?

TAPETE et al. (2016), Remote Sensing of Environment
VHR satellite radar experimental campaign

DLR grant LAN2377: TerraSAR-X Staring Spotlight mode for damage assessment, looting monitoring and prospection of archaeological features in semi-arid environment (PI: D. Tapete)

Marie Curie research grant; EU COFUND/Durham Junior Research Fellowship [EU grant agreement no.267209]

- Bespoke time series of **TSX Staring Spotlight**, bimonthly sampling, **24 cm azimuth resolution**
- Consistent geometry and acquisition parameters: ascending orbits, 39.7° θ
TerraSAR-X Staring Spotlight imagery

TAPETE et al. (2016), Remote Sensing of Environment
Conceptual model

TAPETE et al. (2016), Remote Sensing of Environment
Conceptual model

Set A
- $h = 1\,\text{m}$
- $\alpha = 0^\circ$
- $l = 0.5\,\text{m}$, $l = 1\,\text{m}$, $l = 1.5\,\text{m}$, $l = 2\,\text{m}$, $l = 2.5\,\text{m}$, $l = 3\,\text{m}$, $l = 3.5\,\text{m}$

Set B
- $l = 2\,\text{m}$
- $\alpha = 0^\circ$
- $h = 0.25\,\text{m}$, $h = 0.5\,\text{m}$, $h = 0.75\,\text{m}$, $h = 1.25\,\text{m}$, $h = 1.5\,\text{m}$, $h = 1.75\,\text{m}$, $h = 2.0\,\text{m}$

Set C
- $l = 2\,\text{m}$
- $h = 1\,\text{m}$
- $\alpha = 12.5^\circ$, $\alpha = 25^\circ$, $\alpha = 37.5^\circ$, $\alpha = 50^\circ$, $\alpha = 62.5^\circ$, $\alpha = 75^\circ$

Set D
- $l_1 = 2\,\text{m}$
- $l_2 = 3.5\,\text{m}$
- $\alpha = 0^\circ$
- $h = 1\,\text{m}$
- $\alpha = 0^\circ$, $\alpha = 30^\circ$, $\alpha = 60^\circ$, $\alpha = 90^\circ$, $\alpha = 120^\circ$, $\alpha = 150^\circ$

Set E
- Various
- $d = 1\,\text{m}$, $d = 2\,\text{m}$
- $h = 0.5\,\text{m}$, $h = 1\,\text{m}$
- $h = 1\,\text{m}$

© NERC All rights reserved

TAPETE et al. (2016), Remote Sensing of Environment
Texture analysis and feature extraction

TAPETE et al. (2016), Remote Sensing of Environment
Texture analysis and feature extraction

22nd October 2014

27th December 2014

20th February 2015

\textbf{TAPETE et al.} (2016), Remote Sensing of Environment
Interpretation key matrix

<table>
<thead>
<tr>
<th>Un-looted ground</th>
<th>New looting</th>
<th>Hole filling</th>
<th>Unchanged hole</th>
<th>Looting cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Google Earth

<table>
<thead>
<tr>
<th>(\sigma_{\text{t_s}}^0(i))</th>
<th>(\sigma_{\text{t_z}}^0(i))</th>
<th>(R_{t_s/t_z}(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAR backscattering [dB]

- High
- Low

Ratio [dB]

- +
- 0
- -

TAPETE et al. (2016), Remote Sensing of Environment
Dynamic assessment of looting rates

(a) Oct 2014 / Dec 2014

- 132 looting marks/month (Type 1)
- 82 filling marks/month (Type 2)
- Tot.: 214 marks/month

(b) Dec 2014 / Feb 2015

- 420 looting marks/month (Type 1)
- 235 filling marks/month (Type 2)
- Tot.: 655 marks/month

TAPETE et al. (2016), Remote Sensing of Environment
Dynamic assessment of looting rates

(c) Apr 2015 / Feb 2015

432 looting marks/month (Type 1)
255 filling marks/month (Type 2)

Tot.: **687 marks/month**

(d) Jun 2015 / Apr 2015

535 looting marks/month (Type 1)
245 filling marks/month (Type 2)

Tot.: **780 marks/month**

TAPETE et al. (2016), Remote Sensing of Environment
Looting in 2015 vs. 2016

Optical perspective

End 2015

Radar perspective

Texture

High: 6.01
Low: 0.001

Modern road

Cardo Maximus

Modern road

Cardo Maximus

Mid 2016

Looting intensification
Dura Europos
Dura Europos

Archaeological ruins

Icons in the Jewis Synagogue (~244 A.D.)

© Marsyas 2008

© umbrella.it

© heorthodoxlife.wordpress.com
Dura Europos

TerraSAR-X Staring Spotlight
Radar image 2016
Dura Europos

TerraSAR-X Staring Spotlight
Image texture 2016
Conclusions and future perspectives

Current scenario in satellite SAR science for archaeology

- SAR is not affected by weather conditions, hence monitoring campaigns are largely weather-independent in both arid and humid regions, overcoming limitations of optical imagery (occasionally cloud covered)

- TerraSAR-X Starting Spotlight (< 1 m) brings radar to resolution levels close to those of optical imagery (e.g. QuickBird, GeoEye)

Non-invasive analysis of VHR satellite radar imagery offers novel opportunities

- Digital recording and prospection (feature detection, delineation and mapping; discovery of semi-buried structures; palaeo-environmental studies)

- Conservation and preservation (looting monitoring and damage assessment; condition assessment; safeguarding from natural and anthropogenic geohazards; environmental landscape evolution)
Dr Francesca Cigna
fcigna@bgs.ac.uk
